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Wetting-Driven Casimir Force in Nematic Liquid Crystals
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We study the fluctuation-mediated structural interaction between identical order-inducing subs
immersed in the isotropic phase of a liquid crystal. We show that because of the presence of sub
stabilized nematic wetting layers, the force due to thermal fluctuations of nematic order is repu
rather than attractive, which is in contrast with the standard pseudo-Casimir force between like w
Contrary to expectations, this interaction is characterized by the same range as the mean-field attr
[S0031-9007(99)08386-6]
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Nowadays, it is well established that the Casimir e
fect—the interaction between the walls of a container in
duced by either quantum or thermal fluctuations within th
confined medium [1]—is ubiquitous. The phenomeno
is especially important in systems with long-range correl
tions, where the force is also long range [2]. In soft matt
physics, which covers easily deformable classical system
long-range correlations occur in media with broken con
tinuous symmetry and in critical systems.

Liquid crystals, which are characterized by orienta
tional and in some phases also partial positional ord
of constituents, fall into both categories. The broken
symmetry long-range interaction results from fluctuation
of the average molecular orientation, position of smect
layers, etc. [3,4]. Fluctuations of the degree of orient
tional order, amplitude of mass density wave, etc., how
ever, induce a short-range force whose correlation leng
increases in the vicinity of the corresponding phase tran
tion [5]. This in turn gives rise to an increase of the tota
Casimir interaction which is very prominent if the transi
tion is continuous—and some of them are [6].

But even discontinuous phase transitions in liqui
crystals are usually associated with rather small late
heat, and they can be made continuous by confining t
sample by a substrate that promotes nucleation of one
the phases involved. The mechanism of such wettin
assisted phase transitions is quite different from the bu
one and is characterized by a phase boundary betwe
the substrate-stabilized wetting layer and the bulk, whic
advances from the wall as the transition temperature
approached [7]. The corresponding soft mode represe
fluctuations of position of the phase boundary [8].

In this Letter we analyze the wetting-driven pretrans
tional behavior of the fluctuation-induced force in liquid
crystals, and we find that the force is repulsive and not a
tractive as in nonwetting geometries discussed earlier [
Its range is identical to the range of the mean-field attra
tion caused by the inhomogeneity of the ordering, which
also unusual: in nonwetting geometries the Casimir for
decays more rapidly than the mean-field force. We al
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show that the phase boundary acts as an internal structu
wall attracted to the nearby substrate.

The model system consists of isotropic phase bound
by parallel plates that induce homeotropic uniaxia
nematic order, and the resulting paranematic phase
characterized by a nematic wetting layer and an isotrop
core [7]. In this case, the natural representation
the orientational order parameterQ—an irreducible
second rank tensor—is given by the tensorial ba
T0 ­ s3n ≠ n 2 Idy

p
6, T1 ­ se1 ≠ e1 2 e2 ≠ e2dy

p
2,

T21 ­ se1 ≠ e2 1 e2 ≠ e1dy
p

2, T2 ­ se1 ≠ n 1 n ≠
e1dy

p
2, and T22 ­ se2 ≠ n 1 n ≠ e2dy

p
2, where n

(the director), e1, and e2 form an orthonormal triad
identified byez , ex , ey, and I is the unit tensor [9]. The
component ofQ along T0 is equal to the sum of the
mean-field and fluctuating parts of the degree of orde
and its projections ontoT61 and T62 correspond to
biaxial and director fluctuations.

By scaling the order parameter by the degree of ord
in the bulk nematic phase at the clearing point, the on
elastic-constant approximation of the Landau–de Genn
free energy density—the standard phenomenologic
model of the transition—can be cast into a concise form

f ­
L
2

hj22
0 fu tr Q2 2 2

p
6 tr Q3 1 str Q2d2g

1 =Q
...=Qj , (1)

whereL is the elastic constant,u is the reduced tempera-
ture (equal to 0 at the supercooling limit and to 1 at th
phase transition), andj0 ø 10 nm is the bare correlation
length [8]. To make the model amenable to furthe
analysis, the double-well Landau potential represent
by the homogeneous part off is replaced by a pair of
parabolas corresponding to harmonic expansions of t
free energy density at the two minima [10]. Within
this approximation, the paranematic phase is regarded
being divided into a nematic and an isotropic region, eac
characterized by a set of bulk correlation lengths. In th
nematic region, the correlation lengths of fluctuations o
the degree of order, biaxiality, and director field are give
© 1999 The American Physical Society 1189
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sjN ,0yj0d22 ­
9
4 s1 1

p
1 2 8uy9 d

p
1 2 8uy9 ,

sjN ,61yj0d22 ­
27
4 s1 1

p
1 2 8uy9 d , (2)

and sjN ,62yj0d22 ­ 0 ,

where the subscripts refer to the tensorial base.
the isotropic region all five modes are degenera
sjIyj0d22 ­ u.

The equilibrium ordering consists of a mean-field pa
and of thermally excited fluctuations around it,Q ­ A 1

B. The mean-field part,A, corresponds to the minimum
of the free energy and describes the spatial variati
of the nematic order within the sample consisting o
an ordered wetting layer and a disordered core.A is
determined by a single nontrivial scalar variable—th
degree of order—whereas the other four coefficients
Asrd ­

P2
i­22 aisrdTi all vanish. Because of in-plane

translational invariance of the system,a0 depends on the
transverse coordinate only, and as the walls located
z ­ 0 andz ­ d are identical, it is symmetric and need
to be calculated in only half of the slab. The parabol
approximation of the homogeneous part off thus reads

fh,PA ­
L
2

hfF 1 j22
N ,0sa0 2 ea0d2gHsl 2 zd

1 j22
I a2

0Hsz 2 ldj , (3)

where LFy2 ­ 2s27Ly256j
2
0d s1 2 4uy3 1p

1 2 8uy9 d s1 1
p

1 2 8uy9 d2 and ea0 ­
3
4 s1 1p

1 2 8uy9 d are the free energy density and the degr
of order in the bulk nematic phase, andHszd is the
Heaviside function. The position of the phase bounda
l, is determined by the condition that the equilibrium
profile of a0 be smooth.

The thermal fluctuations of the ordering,Bsrd ­P2
i­22 bisrdTi, are governed by their Hamiltonian, which

is diagonal in the tensorial base used here. Within t
parabolic approximation, the homogeneous part of t
density of the Hamiltonian for0 , z , dy2 is given by

hh,PA ­
L
2

2X
i­22

fj22
N ,iHsl 2 zd 1 j22

I Hsz 2 ld

1 Yidsz 2 ldgb2
i , (4)

Yi ­ hj22
N ,0fea0 2 a0sldg 1 j

22
I a0sldj fsda0ydzd sldg21di0

being the discontinuity of the derivative of the scala
fluctuating fieldbi at the phase boundary, which is, a
1190
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FIG. 1. Steplike mean-field profiles of the paranematic pha
calculated within the full Landau–de Gennes expansion (so
line) and its parabolic approximation (dashed line). Th
substrate-prescribed degree of order equals 1.1 in reduced u
u ­ 1 1 1025, dyj0 ­ 100. Inset: A schematic representa
tion of the paranematic phase characterized by ordered wet
layers and a disordered core.

implied by the Kronecker delta, nonzero only in the ca
of fluctuations of the degree of order.

Let us compare the predictions of the Landau–
Gennes expansion and its parabolic approximation.
illustrated in Fig. 1, the agreement between the mean-fi
profiles of the ordering is very good in the whole rang
of applicability of the approximation (which is bounde
by the clearing point,uNI ­ 1, and the superheating
limit, upp ­ 9y8). Apart from the discontinuity of the
derivative ofb0 at the phase boundary, the approximatio
also gives a fair description of the normal modes. Sin
the wetting-assisted critical behavior of the Casimir for
is expected to be controlled by the slow modes [8
the quality of the approximation can be quantified b
their relaxation rates. In the case of the strong-anchor
model of the surface interaction used here, the tw
slow modes—soft fluctuations of the position of pha
boundary and director fluctuations within the wettin
layer—are underestimated byø10%, which is quite
satisfactory.

Having established the appropriateness of the parab
approximation, we can calculate the interaction free e
ergy of the fluctuations. With a piecewise homogeneo
Hamiltonian, the partition function is reduced to a Gaus
ian functional integral, which can be evaluated by any
the standard methods. We use the Green function
proach, based on the local formulation of the partitio
function and frequently encountered in the theory of v
der Waals forces [11,12]. In the strong anchoring lim
the interaction free energy can be written as a sum o
the five fluctuating degrees of freedom,
FC ­
kTS
4p

2X
i­22

Z `

0
q dq

(
ln

"
1 2 D1,i exp

√
2

2l
JN ,i

!#2

1 ln

"
1 2 D2

i exp

√
2

2sd 2 2ld
JI

!#)
, (5)

whereS is the area of each substrate,q is the in-plane wave vector of fluctuations,J
22
N ,i andJ

22
I stand forj22

N ,i 1 q2 and

j
22
I 1 q2, respectively, andD6,i ­

Ui6Vi

16Vi
andDi ­

12Vi

11Vi

D2,i1exps22lyJN ,id
12D1,i exps22lyJN ,i d , whereUi ­

J
21
I 2J

21
N ,i

J
21
I 1J

21
N ,i

andVi ­
Yi

J
21
I 1J

21
N ,i

.
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Note that all information on the mean-field profile of th
ordering is contained inl, the thickness of the wetting
layer, and inYi, the discontinuity of the derivative of the
normal modes at the phase boundary.

According to its structure, the first term in Eq. (5) cor
responds to the interaction between the wall and the ph
boundary, and the second one represents the interac
between the two phase boundaries. The former is dom
nant for two reasons: (i) the distance between the wall a
the phase boundary,l, is usually far smaller than the dis-
tance between the phase boundaries,d 2 2l, and (ii) the
nematic wetting layer is characterized by long-range cor
lations and long-range fluctuation-induced force, where
correlations in the isotropic core are short ranged and so
the fluctuation-induced force [5].

There are three types of contributions to the interacti
between the wall and the phase boundary, and th
differ both in sign and in range. Let us first discus
the interaction induced by fluctuations of the degre
of order, which are characterized by finite correlatio
lengths in both nematic and isotropic phases.Y0 is finite
and negative, andD1,0 also turns out to be negative
in the whole range of applicability of the parabolic
approximation. This implies that the fluctuations of th
degree of order give rise to a repulsion between the w
and the phase boundary, which can be estimated by

kTS
4pjN ,0l

j
21
N ,0 2 j

21
I 2 Y0

j
21
N ,0 1 j

21
I 1 Y0

exp

√
2

2l
jN ,0

!
(6)

and is short ranged. The sign of interaction can be u
derstood by recognizing that the fluctuation-induced for
between two objects that both impose either Dirichlet
Neumann boundary conditions is attractive, whereas
the case of Dirichlet boundary conditions at one obje
and Neumann at the other it is repulsive [3,4]. In th
strong anchoring limit, fluctuations of the degree of o
der must vanish at the wall—a Dirichlet boundary cond
tion. On the other hand, on crossing the phase bound
the derivative of the fluctuations must change discontin
ously, which is qualitatively closer to a Neumann than
a Dirichlet condition; after all, the wetting-specific sof
mode is localized at the phase boundary [8] so that t
fluctuations are largest there. Therefore, the fluctuatio
of the degree of order within the wetting layer experienc
mixed boundary conditions, and that is why the resultin
interaction is repulsive.

A similar argument applies to the interaction induce
by biaxial fluctuations. SincejN ,61 ø jI , the lowest
normal modes are restricted to the isotropic core: in t
nematic wetting layer, they decay exponentially with th
distance from the phase boundary. This means that wit
the wetting layer, the amplitude of biaxial fluctuations
largest at the phase boundary [8], so that the effect
the boundary condition that the fluctuations be smoo
at z ­ l is quite different from the strong anchoring
imposed by the wall. The resulting repulsive interactio
e
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is approximately given by

kTS
2pjN ,62l

j
21
N ,62 2 j

21
I

j
21
N ,62 1 j

21
I

exp

√
2

2l
jN ,62

!
(7)

and is rather weak, because the correlation length
biaxial modes in the nematic phase is very short.

On the other hand, the correlation length of direct
fluctuations in the nematic phase is infinite, and the leadi
term of interaction induced by the two modes reads

2
kTSz s3d

4pl2 , (8)

wherez is the Riemann zeta function. This long-rang
interaction is attractive, which can again be interpret
in terms of (dis)similarity of boundary conditions. In
the isotropic phase, director fluctuations are very ha
compared to the nematic phase, and the lowest norm
modes are actually confined to the nematic layer a
practically do not penetrate the isotropic core [8]. Thu
the effective boundary condition at the phase boundary
very similar to strong anchoring at the solid substrate, a
the force mediated by director fluctuations is attractive.

The force between the wall and the phase bounda
which is dominated by long-range director modes’ attra
tion, is not directly measurable because the thickness
the wetting layer is not a free parameter. Its contributio
to the total wall-to-wall force is determined by the func
tional dependence ofl on sample thickness and reads

FC ø 2
kTSz s3d

2pl3

≠l
≠d

. (9)

Now l is a decreasing function ofd, because the nematic
order in each wetting layer is stabilized both by nearb
and distant walls, and the larger the distance betwe
them, the thinner the wetting layers. This revers
the sign of interaction: attraction between the wall an
the phase boundary results in repulsion between
walls. In the mean-field theory,≠ly≠d ø 2const3
exps2dyjId for large d’s [10], which means that the
fluctuation-induced force is short ranged and characteriz
by the correlation lengthjI . Let us stress that the
subdominant attractive force caused by the interacti
between the phase boundaries falls off twice as fast, i
as exps22dyjI d.

All in all, the pseudo-Casimir force in the parane
matic phase is dominated by the repulsion originating
the long-range interaction between the substrate and
phase boundary. To establish its relevance for the to
structural force it should be compared to the mean-fie
interaction resulting from the inhomogeneity of the orde
ing itself, which is attractive and decays asymptotical
as exps2dyjId [13]. This brings us to an important con
clusion: the ranges of fluctuation-induced and mean-fie
forces in the paranematic phase are identical, which is qu
unique. Their relative magnitude is primarily determine
1191
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by the ratio of their energy scales,kTyS
2
NILj0, whereSNI

is the unscaled value of the degree of order in the bulk n
matic phase at the nematic-isotropic transition. In typic
materials such as 5CB, this ratio is close to 1, so that
principle the two forces are comparable.

This rough estimate is confirmed by numerical analys
(Fig. 2). The fluctuation-induced force is indeed repu
sive, and its magnitude typically ranges from 15% to 20
of the mean-field attraction. However, in the vicinity o
the metastability limit of the paranematic phase—belo
which the system can exist only in the nematic state—
the pseudo-Casimir force becomes attractive and even
verges at the very limit. It turns out that the crossove
and the divergence are due to the attraction between
phase boundaries, which is not surprising: close to t
metastability limit the wetting layers no longer occupy
small part of the total volume and the distance betwe
the phase boundaries is comparable to the distance
tween the wall and the phase boundary.

How does the relative magnitude of pseudo-Casim
and mean-field force behave beyond the superheat
limit upp ­ 9y8, where the parabolic approximation is
not applicable? On one hand,FCyFMF should increase
on heating, because the phase boundary moves close
the wall. But foru ¿ uNI ­ 1 the current model of the
surface coupling is no longer relevant: the ordering pow
of real substrates is finite, so that the degree of ord
at the wall decreases with temperature. This suppres
both wetting-specific Casimir force and mean-field forc
and far above the transition the total structural interactio
reduces to the direct wall-to-wall Casimir attraction.

In conclusion, just above the clearing point the Casim
interaction between order-inducing substrates immers
into the isotropic phase is dominated by the repulsio
resulting from the interaction between the wall and th
phase boundary which separates the nematic wetting la
from the isotropic bulk. The wetting-driven fluctuation
induced repulsion is short ranged with the screenin
length identical to the range of the mean-field attractio
and the ratio of magnitudes of the fluctuation-induced an
mean-field forces is typically0.15 0.2.

The effect must be observable. We have shown that
wetting geometry, the fluctuation-induced force represen
a considerable part of the total structural force, an
structural force in liquid crystals has already been studi
by the surface force apparatus [14]. The error of th
reported measurements is well below 10%, so that t
setup is sensitive enough to detect the Casimir for
provided that the temperature resolution of the experime
is ,10 mK. This level of thermal stability is achievable
[14], and our results can readily be put to the test.
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FIG. 2. Ratio of the fluctuation-induced and the mean-fiel
forces as a function of temperature fordyj0 ­ 8.5, 9, 10, 12,
and `. The relative magnitude of the Casimir interaction
typically ranges between20.15 and20.2 except in the vicinity
of the metastability limit of the paranematic phase, where
becomes positive and eventually diverges at the very limit.
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